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Abstract. Dust emissions significantly influence air quality and contribute to nitrate aerosol pollution by altering aerosol 18 

acidity. Understanding how dust interacts with ammonia emission controls is crucial for managing particulate nitrate 19 

pollution, especially in urban areas. In this study, we conducted field measurements of aerosol components and gases 20 

across three cities in Eastern China during the spring of 2023. By combining an aerosol thermodynamic model with 21 

machine learning, we assessed the contribution of dust to aerosol pH and its impact on nitrate formation. Our results show 22 

that changes in ammonia, both in the gas and particle phases, were the main factors affecting aerosol pH, with dust 23 

particles contributing to about 7% of the total pH variation. During dust events, high concentrations of non-volatile ions 24 

increased aerosol pH, leading to higher nitrate levels in particulate form. Machine learning analysis revealed that extreme 25 

dust storms caused a significant change in aerosol pH, enhancing nitrate partitioning. Further simulations indicated that 26 

while reducing ammonia emissions is effective in lowering nitrate levels under normal conditions, this effect is 27 

significantly reduced in dust-affected environments. Dust particles act as a buffer, reducing the sensitivity of nitrate 28 

formation to ammonia emission reductions. These findings emphasize the need to consider dust pollution when designing 29 

strategies for controlling particulate nitrate levels and highlight the complex interactions between dust and anthropogenic 30 

emissions.  31 
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1 Introduction 33 

Airborne dust is a major component of atmospheric aerosols, accounting for approximately 75% of the global aerosol 34 

mass load (Mahowald et al., 2006; Zhao et al., 2022; Chen et al., 2023c). Dust exerts multiple impacts on air quality 35 

(Jickells et al., 2005; Rosenfeld et al., 2001), climate (Huang et al., 2011), and human health (Zhang et al., 2023; Goudie, 36 

2014). It can be broadly categorized into anthropogenic dust and natural dust based on sources and emission mechanisms 37 

(Chen et al., 2018; Chen et al., 2023a). Anthropogenic dust originates from human activities, such as construction, 38 

agricultural and non-exhaust vehicular emissions (Liu et al., 2021). In contrast, natural dust mainly arises from bare 39 

surfaces in arid and semi-arid regions (Shao and Dong, 2006), which cover approximately 30% of the global land area 40 

(Soussé-Villa et al., 2024; Xin et al., 2023). Beyond anthropogenic influences, over 300 countries worldwide are affected 41 

by natural dust pollution (Kurokawa and Ohara, 2020; Notaro et al., 2015). Dust storms originating in arid regions can be 42 

transported over thousands of kilometers, significantly impacting downstream air quality and atmospheric chemistry (Tan 43 

et al., 2012; Milousis et al., 2024; Sun et al., 2001). 44 

Dust emissions contain nonvolatile cations (NVCs), such as calcium and magnesium ions, which are alkaline substances 45 

that can neutralize acidic aerosol components, such as sulfates, thereby increasing aerosol pH (Wu et al., 2013; Ding et 46 

al., 2019). Dust particles also engage in heterogeneous reactions with gaseous nitric acid, buffering acidic species and 47 

modulating pH dynamics. Aerosol pH is a critical factor in atmospheric chemical processes, influencing gas-particle 48 

partitioning of inorganic aerosols (Guo et al., 2018), secondary organic aerosol (SOA) formation (Xu et al., 2015; Zhang 49 

et al., 2017; Nguyen et al., 2014), and metal-catalyzed oxidation reactions (Fang et al., 2017). Regional variations in 50 

aerosol pH alter the chemical characteristics of atmospheric pollution, affecting pollutant lifetimes and deposition rates, 51 

which in turn have profound implications for ecosystems and public health (Guo et al., 2016). Despite the incorporation 52 

of aerosol pH modules in some atmospheric chemistry models, inaccuracies in dust emission inventories can lead to biases 53 

in estimated aerosol pH, thereby introducing systematic errors in simulating associated chemical processes, such as nitrate 54 

formation. 55 

Nitrate has emerged as a dominant component of fine particulate matter (PM2.5) worldwide (e.g., China, Europe, the 56 

United States, and India), particularly as sulfate aerosol concentrations decline due to sustained SO2 emission reductions 57 

(Weber et al., 2016; Geng et al., 2017; Zhai et al., 2021; Hauglustaine et al., 2014; Beaudor et al., 2024). The reaction 58 

between gaseous nitric acid (HNO₃) and ammonia (NH₃) represents one of the primary pathways for the formation of fine 59 

mode nitrate (Stelson and Seinfeld, 1982; Metzger et al., 2002). Nitrate formation plays a critical role in atmospheric 60 
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chemistry and the global nitrogen cycle, including reactive nitrogen deposition (Chul H. Song, 2000). The gas-particle 61 

partitioning of HNO3 and nitrate formation is strongly influenced by aerosol pH (Guo et al., 2018; Shi et al., 2019). When 62 

total ammonia (gaseous and particulate) or NVCs are insufficient to fully neutralize aerosol sulfate, HNO₃ will not 63 

condense on aerosol due to low pH (Nenes et al., 2020; Guo et al., 2017a; Vasilakos et al., 2018; Ding et al., 2019). 64 

However, this conceptual framework may oversimplify the influence of aerosol acidity, as it fails to fully consider the 65 

substantial volatility differences between deliquescent aerosols containing sulfates or NVCs and those dominated by 66 

ammonium or nitrate, both of which are highly sensitive to aerosol pH (Nenes et al., 2020; Nenes et al., 2021). In dust-67 

polluted environments, however, the abundance of alkaline particles, such as calcium ions, can alter nitrate formation 68 

pathways (Seinfeld et al., 1998; Hrdina et al., 2021; Li et al., 2024). Quantitative insights into how urban dust influences 69 

nitrate formation and its regulation remain nevertheless limited. 70 

East Asia, home to some of the world's major dust source regions, significantly contributes to global atmospheric dust 71 

pollution. Under the influence of Mongolian cyclones, dust particles originating from Mongolia are transported long 72 

distances, affecting air quality and atmospheric processes across East Asia (Fu et al., 2014; Sun et al., 2001; Wang et al., 73 

2021). The Yangtze River Delta (YRD) is a densely urbanized region in Eastern China, where air quality is influenced by 74 

both natural and local anthropogenic dust sources. This region provides an ideal atmospheric setting to investigate the 75 

impact of dust pollution on urban aerosol acidity and nitrate chemistry. Under these contexts, this study examines changes 76 

in aerosol pH, and nitrate gas–particle partitioning (defined as the gas-particle partitioning of HNO3 combined to its acid 77 

dissociation) under influence of both anthropogenic and natural dust pollution in spring 2023, focusing on three 78 

representative cities (Xuzhou, Zhenjiang, and Suzhou) in the YRD. The contributions of chemical and meteorological 79 

components to aerosol pH and the effects of dust storms on ε(NO3⁻) are quantified. By integrating statistical analysis 80 

approaches, we further quantify the contribution of different factors to aerosol pH and ε(NO3⁻). Sensitivity analyses are 81 

conducted to evaluate the effects of TNHx (TNHx = NH₃ + NH₄⁺), TNO3 (TNO3 = HNO₃ + NO₃⁻) and SO4
2⁻ emission 82 

controls on nitrate partitioning across varying dust pollution levels, providing a scientific basis for formulating nitrate 83 

pollution control strategies during dust events. 84 

2.Data and Methods 85 

2.1 Sampling site and instruments 86 

This study selected three cities in the YRD region, China, that represent a gradient of dust transport effects: Xuzhou 87 
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(32.18°N, 119.48°E), Zhenjiang (32.16°N, 119.49°E), and Suzhou (31.29°N, 120.61°E). These cities are distributed along 88 

the north-to-south dust transport pathway, enabling a systematic investigation of the impacts of dust transport, including 89 

gradient variations in particle chemical properties, aerosol acidity (pH), and gas–particle partitioning. The sampling sites 90 

comprehensively reflect the gradient effects of dust across different regions. Observations were conducted at 91 

environmental monitoring stations within each city. These urban monitoring sites, located in mixed residential and 92 

commercial areas, are influenced by multiple sources, including industrial and traffic emissions (Zheng et al., 2021). 93 

Water-soluble inorganic ions in PM2.5 (e.g., NH₄⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, SO₄²⁻, NO₃⁻, Cl⁻) and gaseous components (NH₃, 94 

HNO₃, HCl) were continuously monitored using a Monitor for AeRosols and Gases in ambient Air (MARGA) system 95 

(Trebs et al., 2004; Rumsey et al., 2014). The system exhibited high correlation between cation and anion measurements 96 

(Fig. S1). Throughout the monitoring period, ambient air samples were drawn into the system, where aerosols and gaseous 97 

pollutants were separated. Aerosol particles were collected using a wet sampler, dissolved in water to form sample liquid, 98 

and then analyzed via ion chromatography. For gaseous pollutants, air samples passed through a membrane filter to 99 

remove particles before entering a scrubbing tower, where gas-phase components were dissolved in water to form sample 100 

liquid for ion chromatographic analysis (Rumsey et al., 2014). The MARGA system is equipped with automatic 101 

calibration and cleaning functions, ensuring stability and accuracy during long-term operation. The entire process is 102 

controlled by dedicated software, enabling simultaneous monitoring of multiple components and real-time data output 103 

(Schaap et al., 2004). Meteorological data (temperature and relative humidity) were obtained from corresponding 104 

observation stations, while additional meteorological parameters were sourced from the European Centre for Medium-105 

Range Weather Forecasts (ECMWF) ERA5 reanalysis dataset (https://cds.climate.copernicus.eu/, last access: November 106 

21, 2023). Reginal PM10 data were retrieved from the China National Environmental Monitoring Centre 107 

(https://air.cnemc.cn:18007/, last access: November 21, 2023). 108 

2.2 Aerosol pH estimation  109 

Aerosol pH is a particle property that significantly influences aerosol formation, yet it is challenging to measure directly. 110 

Traditional methods, such as ion balance and molar ratio approaches, often fail to provide accurate evaluations of aerosol 111 

pH (Guo et al., 2016; Weber et al., 2016). Currently, the most widely used approaches include the ISORROPIA-II 112 

thermodynamic model (Fountoukis and Nenes, 2007). In this study, we employed the ISORROPIA-II thermodynamic 113 

model to estimate aerosol pH (see Eq. 1) as well as the gas–particle partitioning of water-soluble ions, semi-volatile 114 
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compounds, and water content. At low RH, aerosols are unlikely to be in a completely liquid state, and secondary organic 115 

aerosols (SOA) may affect the distribution of semi-volatile compounds due to reduced diffusion within the particles, thus 116 

influencing the predicted pH values; At high RH levels, such as RH > 95%, aerosols may deliquesce, and the exponential 117 

increase in water activity (Wi) can introduce significant uncertainty into the pH values (Guo et al., 2017b; Malm and Day, 118 

2001). To improve the model's accuracy, we applied both the forward mode for metastable aerosols and excluded data 119 

with relative humidity (RH) below 35% or above 95% (Nah et al., 2018; Guo et al., 2015). The equation used to calculate 120 

aerosol pH in ISORROPIA-II is as follows (Liu et al., 2022): 121 

𝑝𝐻 = − logଵ଴

ଵ଴଴଴ఊ
ಹశ஼

ಹశ

ௐ೔
                                                                                                                                                                                             (1) 122 

In the Eq. (1), 𝛾ுశ represents the activity coefficient of hydrogen ions, which is generally set to 1 (Liu et al., 2022). 𝐶ுశ 123 

denotes the hydrogen ion concentration in the aerosol aqueous phase, expressed in μg m−3. 𝑊௜ refers to the water content 124 

of the aerosol phase output by ISORROPIA-II (in μg m⁻³). By incorporating these parameters, the ISORROPIA-II model 125 

provides a reliable framework for estimating aerosol pH, allowing for accurate analysis of its variation and impact under 126 

different environmental and pollution scenarios, including those influenced by dust events. 127 

2.3 The gas–particle partitioning of nitrate (ε(NO3⁻)) 128 

Nitrate, owing to its volatility, exists in the atmosphere in two primary forms. In the particulate phase, it predominantly 129 

appears as semi-volatile ammonium nitrate. However, where ammonia and NVCs fail to fully neutralize aerosol sulfate, 130 

the formation of semi-volatile ammonium nitrate is inhibited. Under such conditions, nitrate tends to remain in the gaseous 131 

phase as HNO₃, which can subsequently transform into more stable coarse-mode salts, such as Ca(NO₃)₂, over time (Guo 132 

et al., 2017c; Vasilakos et al., 2018; Hrdina et al., 2021). ε(NO3
−) defined as the ratio between particle-phase nitrate over 133 

TNO3 serves as a key indicator of nitrate distribution between its gaseous and particulate phases. Changes in aerosol pH, 134 

influenced by varying meteorological conditions, significantly affect ε(NO3
−). This study employs Eq. (2) (Guo et al., 135 

2018; Nenes et al., 2020) to calculate theoretical values of ε(NO3
−) for each observational dataset. The results enable a 136 

detailed analysis of how variations in pH across different ranges influence the gas–particle partitioning of nitrate. 137 

𝜀(𝑁𝑂ଷ
ି) =

ுಹಿೀయ
∗ ௐ೔ோ்൫଴.ଽ଼଻×ଵ଴షభర൯

ఊಿೀయ
షఊಹశଵ଴ష೛ಹାுಹಿೀయ

∗ ௐ೔ோ்(଴.ଽ଼଻×ଵ଴షభర)
                                                                                                                                                (2) 138 

In the equation, 𝐻ுேைయ
∗ = 𝐻ுேைయ

𝐾௡ଵ (mol2 kg⁻2 atm⁻¹) represent the product of the Henry’s law constant and the acid 139 

dissociation constant for HNO₃. R is the ideal gas constant (J mol⁻¹ K⁻¹), and T is the temperature in Kelvin (K). The 140 
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temperature dependence for 𝐻ுேைయ
 𝑎nd 𝐾௡ଵ can be found in Clegg et al. (1998). pH is calculated using Eq. (1). The factor 141 

0.987 × 10ିଵସ is a unit conversion factor used to convert from atm and µg to SI units. 𝛾ேைయ
ష and 𝛾ுశare the activity 142 

coefficients for 𝑁𝑂ଷ
ି and 𝐻ା, respectively. Activity coefficient predicted by ISORROPIA-II are 𝛾ேைయ

ష𝛾ுశ=0.28, 𝛾ுశ =1 143 

(Guo et al., 2018; Guo et al., 2017b; Nah et al., 2018). In the standard S-curve, pH varies within a specific range, and this 144 

relationship is influenced by the temperature dependence of the Henry’s law constant and the acid dissociation constant. 145 

This model allows for a more accurate estimation of nitrate aerosol behavior under varying environmental conditions. 146 

More detailed information about inputs and outputs for the ISORROPIA-II model can be found in Tables S1 – S3. 147 

2.4 Multi-site concentration weighted trajectory (CWT) 148 

The CWT analysis method is widely used to assess the potential origins and transport pathways of air pollutants observed 149 

at receptor sites. By integrating trajectory analysis, this approach provides insights into pollutant sources and their 150 

atmospheric transport dynamics. In this study, we employed the CWT model, coupled with backward trajectories and 151 

multi-site air quality monitoring data, to investigate the potential source regions and long-range transport of the spring 152 

2023 dust storm event observed in Xuzhou, Zhenjiang, and Suzhou. When combined with data from multiple monitoring 153 

sites, the CWT model demonstrates enhanced robustness and reliability (Boichu et al., 2019). Briefly, multi-site CWT 154 

analysis integrates pollutant concentration data from several monitoring stations with the corresponding backward 155 

trajectories to estimate the likely origins of the observed pollutants. Air pollutant concentrations are spatially allocated to 156 

grid cells traversed by air masses, weighted by the residence time within each grid cell. Compared to single-site CWT 157 

analysis, the multi-site approach offers broader spatial coverage, minimizes site-specific biases, and increases the dataset 158 

size, thereby improving the accuracy and spatial resolution of source apportionment, particularly for complex transport 159 

patterns. 160 

In this study, 48-hour backward trajectories at 50 meters above ground level were computed using meteorological data 161 

from the Global Data Assimilation System (GDAS). The CWT analysis was conducted using the Zefir toolkit 162 

implemented in Igor Pro (Petit et al., 2017). This methodology provided a comprehensive assessment of dust transport 163 

and source attribution, facilitating a deeper understanding of dust storm dynamics in the region. 164 

𝐶𝑊𝑇௜௝ =
∑ ஼೗∗ఛ೔ೕ,೗

೙
೗సభ

∑ ఛ೔ೕ,೗
೙
೗సభ

                                                                                                                                                                                                            (3) 165 

In Eq. (3), 𝐶𝑊𝑇௜௝   represents the weighted concentration in the grid at the i row and j column, 𝐶௟  is the pollutant 166 

https://doi.org/10.5194/egusphere-2025-231
Preprint. Discussion started: 12 February 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

concentration corresponding to the l trajectory, and 𝜏௜௝,௟ is the residence time of the trajectory in the (i,j) grid. n denotes 167 

the total number of all trajectories. 168 

2.5 Machine learning model 169 

Aerosol pH and ε(NO3
−) exhibit nonlinear responses to multiple influencing factors. In this study, we employed a machine 170 

learning approach to investigate the effects of extreme dust storm conditions on aerosol pH and ε(NO3
−). Specifically, we 171 

used the random forest (RF) algorithm to construct regression models tailored to aerosol pH and ε(NO3
−) for each city 172 

under investigation. The dataset for the RF regression models was divided into a training set (80%) and a test set (20%). 173 

The training set was utilized to build the models, while the test set was used to validate their performance. The input 174 

predictive features for both aerosol pH and ε(NO3
−) models included the water-soluble inorganic chemical composition 175 

of aerosols (Na+, SO4
2−, NH4

+, NO3
−, Cl−, Ca2+, K+, Mg2+), gaseous species (NH3 and HNO3), and meteorological 176 

parameters (T and RH). To evaluate the model performance, we applied 5-fold cross-validation for parameter tuning. 177 

Model performance was evaluated using seven statistical metrics: Mean Absolute Error (MAE), Root Mean Squared Error 178 

(RMSE), Normalized Mean Squared Error (NMSE), Mean Bias (MB), Normalized Mean Bias (NMB), Index of 179 

Agreement (IOA), and the correlation coefficient (R). Detailed definitions and calculations for these metrics are provided 180 

in Supplementary Text 1. This machine learning based approach enabled us to quantify the complex, nonlinear 181 

relationships between aerosol properties, chemical compositions, and meteorological conditions, offering deeper insights 182 

into the drivers of aerosol pH and ε(NO3
−) under varying dust pollution scenarios. 183 

In addition, SHapley Additive exPlanations (SHAP), a method derived from the Shapley value concept in game theory, 184 

provides an interpretable framework to explain the predictions of complex machine learning models. SHAP quantifies 185 

the contribution of each input variable to individual predictions, making it a powerful tool for understanding model 186 

behavior (Duan et al., 2024; Lundberg and Lee, 2017). In this study, SHAP values were employed to assess the influence 187 

of various factors on aerosol pH and ε(NO3
−) under dust storm and local dust conditions. A positive SHAP value for a 188 

given factor indicates that it contributes positively to the prediction, whereas a negative SHAP value implies a suppressive 189 

or inhibitory impact. This analysis allowed us to disentangle the relative contributions of chemical composition, 190 

meteorological conditions, and other variables to the variations in aerosol properties under different dust scenarios. 191 
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3. Results and Discussion 192 

3.1 Observational evidence of anthropogenic and natural dust pollution 193 

Dust emissions can be classified into anthropogenic and natural sources, with Ca²⁺ and Mg²⁺ commonly used as tracers . 194 

Figure 1 shows the relationship between the concentrations of Ca²⁺ and Mg²⁺ during the observation period from March 195 

to April 2023 across the three cities (Xuzhou, Zhenjiang, and Suzhou). It is evident that the concentrations of Ca²⁺ and 196 

Mg²⁺ exhibit two distinctly different linear slopes, indicating that the different dust origins during this period were 197 

influenced by both long-range transport dust storms and local dust emissions. In particular, during the period from April 198 

11th to 13th, a severe dust storm originating was transmitted from northern regions, first impacting Hohhot, and then 199 

southward to the southern cities of the YRD region. As shown in Fig. 2a, the PM10 concentrations in the cities along the 200 

transport path exhibited a distinct gradient, with peak values reaching approximately 1702 μg m⁻³ in Hohhot, 1614 μg 201 

m⁻³ in Xuzhou, 925 μg m⁻³ in Zhenjiang, and 576 μg m⁻³ in Suzhou, respectively. In Xuzhou, the average concentration 202 

of Ca²⁺ increased from 0.47 ± 0.36 μg m⁻³ during the local dust period to 2.00 ± 1.66 μg m⁻³ during the dust storm period, 203 

marking a fourfold increase. Similarly, the average Ca²⁺ concentration rose from 0.30 ± 0.23 μg m⁻³ to 1.69 ± 1.41 μg m⁻³ 204 

in Zhenjiang, while the concentration increased from 0.35 ± 0.26 μg m⁻³ to 0.92 ± 0.52 μg m⁻³ in Suzhou. 205 

 206 

Figure 1. Relationship between Ca²⁺ and Mg²⁺ concentrations in PM2.5 in Xuzhou (triangle), Zhenjiang (square), and Suzhou (circle). 207 

Dust types are distinguished based on the slope of the Ca²⁺ to Mg²⁺ concentration ratio, with local dust (gray) and dust storm (brown) 208 

indicated. Light gray dots represent the concentrations of Ca²⁺ and Mg²⁺ observed in the three cities during March – April 2023. 209 

 210 

Figure 2a and b illustrate the temporal evolution of PM10 and Ca²⁺ concentrations during the dust storm, showing an initial 211 
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spike in Hohhot, followed by a gradual increase across the Beijing-Tianjin-Hebei (BTH) region, and eventual dispersion 212 

into several cities in Jiangsu Province. This progression is consistent with the CWT-weighted trajectory patterns shown 213 

in Fig. 2c and d, which delineate the transport pathways of the dust storm. The maps highlight significant contributions 214 

from Mongolia – the dust storm's origin – to regions including Hohhot, Beijing, Tianjin, Shijiazhuang, Jinan, Zhengzhou, 215 

and Jiangsu. This finding corroborates the results of Chen et al. (2023b), who attributed the dust storm to a strong cold 216 

high-pressure system and cold front that transported substantial quantities of coarse dust aerosols southward into the YRD 217 

region. Southward-moving cold fronts play a critical role in the diffusion and transport of atmospheric pollutants. In arid 218 

and semi-arid regions, these storms mobilize large amounts of crustal elements, such as Ca²⁺, with high winds lifting dust 219 

from surface sources, including city streets, construction sites, and other exposed land areas (Ding et al., 2019). 220 

 221 

Figure 2. Time series of PM10 and Ca²⁺ concentrations, and their concentration-weighted trajectories for cities along the dust transport 222 

path. (a) Time series of PM10 in 14 cities along the BTH region, and (b) Time series of Ca²⁺ concentrations in Xuzhou, Zhenjiang, and 223 

Suzhou and the correlation of Ca²⁺ and PM10. (c) 48-hour CWT-weighted spatial distribution of PM10 concentrations in 14 cities from 224 
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April 5 to 20, and (d) 48-hour CWT-weighted spatial distribution of Ca²⁺ concentrations in Xuzhou, Zhenjiang, and Suzhou (units: μg 225 

m⁻³). 226 

 227 

Figure 3 presents the relative contributions within PM2.5 water-soluble inorganic species (WSIS) during local dust and 228 

dust storm periods in Xuzhou, Zhenjiang, and Suzhou. Across the three cities, the combined contribution of sulfate, nitrate, 229 

and ammonium consistently exceeded 80% of WSIS, confirming the importance of secondary inorganic aerosols in fine 230 

particulate pollution. Nitrate was the most significant contributor to WSIS during both periods, particularly during the 231 

local dust period, with an average contribution ranging from 49.3% to 52.6%. However, its relative contribution decreased 232 

during the dust storm period, dropping to 34.0% to 40.8%. In contrast, the relative contribution of sulfate increased during 233 

the dust storm period, with increments of 5.2%, 5.0%, and 6.7% in Xuzhou, Zhenjiang, and Suzhou, respectively. This 234 

suggests that the atmospheric dilution and dispersion effects during dust storms might impact nitrate aerosols more 235 

significantly than sulfate. The conclusion of Wang et al. (2022) also supports this result. Indeed, in eastern China, sulfate 236 

aerosols are more regionally distributed as secondary aerosol components, while nitrate formation is more influenced by 237 

local conditions (Wang et al., 2016; Zhang et al., 2015). As expected, during the dust storm period, the relative contribution 238 

of Ca²⁺ and Mg2+ increased across all three cities, with an average rise of approximately 10% compared to the local dust 239 

period.. 240 

 241 

Figure 3. Relative contributions of water-soluble inorganics (SO₄²⁻, NH₄⁺, NO₃⁻, Ca²⁺, Na⁺, Mg²⁺, K⁺, and Cl⁻) within the PM2.5 fraction 242 

in Xuzhou, Zhenjiang, and Suzhou during dust storm and local dust pollution periods, respectively. 243 
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 244 

3.2 Driving factors of aerosol pH 245 

Aerosol pH plays a crucial role in influencing aerosol formation and chemical composition. By regulating the partitioning 246 

of semi-volatile compounds between the gas and particle phases, aerosol pH directly affects the distribution of particulate 247 

matter in the atmosphere (Guo et al., 2017b). To examine the factors influencing aerosol pH, we utilized the ISORROPIA-248 

II thermodynamic model and sensitivity analysis to quantify the relative contributions of chemical and meteorological 249 

factors, such as T and RH, in Xuzhou, Zhenjiang, and Suzhou. The correlation between simulated and observed 250 

concentrations of NH₃ and particulate NO₃⁻ is presented in Fig. 4. Across all three cities, the simulated values exhibit 251 

strong agreement with measurements (R² = 0.94 – 0.99). Additionally, Fig. S2 shows high correlations (R² = 0.90 – 0.97) 252 

for particle-phase ammonium and chloride between ISORROPIA-II predictions and observations, confirming the robust 253 

performance of the thermodynamic model in this study. 254 

To assess the impact of individual factors (TNO3, TNHx, Ca²⁺, SO₄²⁻, T and RH) on aerosol pH, we estimated their relative 255 

contributions using methods like those proposed by Zheng et al. (2020) and Zheng et al. (2022). First, we calculated the 256 

monthly average values for each factor in March and April, referred to as 𝑝𝐻௜(ଷ,ଷ) and 𝑝𝐻௜ (ସ,ସ), respectively. Here, 𝑝𝐻௜ 257 

represents the influence of factor i on pH, with the numbers in parentheses indicating the respective months. For the 258 

analysis of a specific factor, we used the March average value of that factor while holding the other variables at their 259 

average levels for April. This yielded the aerosol pH value, denoted as 𝑝𝐻௜ (ଷ,ସ). Similarly, when using the April average 260 

value of the factor and maintaining the other variables at their March average levels, we recorded the resulting pH as 261 

𝑝𝐻௜ (ସ,ଷ) . The relative change in pH, denoted as Δ𝑝𝐻௜ (ଷ)  and Δ𝑝𝐻௜ (ସ)  was calculated as the mean difference between 262 

𝑝𝐻௜ (ଷ,ଷ) and 𝑝𝐻௜ (ସ,ଷ), and between 𝑝𝐻௜(ସ,ସ) and 𝑝𝐻௜ (ଷ,ସ), respectively (see Eqs. 4 and 5). Finally, the overall impact of 263 

each factor on aerosol pH could be estimated (see Eq. 6). 264 

𝛥𝑝𝐻௜ (ଷ) = 𝑝𝐻௜ (ଷ,ଷ) − 𝑝𝐻௜ (ସ,ଷ)                                                                                                                                              (4) 265 

𝛥𝑝𝐻௜ (ସ) = 𝑝𝐻௜ (ସ,ସ) − 𝑝𝐻௜ (ଷ,ସ)                                                                                                                                                       (5) 266 

𝛥𝑝𝐻௜ =
ቂ௱௣ு೔(య)ቃାቂ௱௣ ೔(ర)ቃ

ଶ
                                                                                                                                                        (6) 267 

The impact of each factor could be positive or negative, which was detailed in Fig. S3. As shown in Fig. 5, atmospheric 268 

total ammonia emerged as the most significant driver of aerosol pH changes in all three cities, contributing 42%, 57%, 269 
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and 43% of the observed pH in Xuzhou, Zhenjiang, and Suzhou, respectively. Total ammonia led to ∆𝑝𝐻்ேுೣ
 increases 270 

of 0.6, 1.3, and 0.5 units in these cities during spring 2023. For Zhenjiang, T and Ca²⁺ were the next most influential 271 

factors, contributing 0.6 and 0.15 units to 𝛥𝑝𝐻்  and 𝛥𝑝𝐻஼௔మశ, respectively. Sulfate exhibited the smallest influence on 272 

aerosol pH, where a concentration change of 0.3 μg m⁻³ corresponded to a 𝛥𝑝𝐻ௌைర
మష of approximately 0.05 units. These 273 

results align with the findings of Weber et al. (2016), which suggest that aerosol pH is less sensitive to changes in sulfate 274 

concentrations compared to ammonia levels. 275 

 276 

Figure 4. Correlation between ISORROPIA-II simulated and observed values of NH₃ and NO₃⁻ in three cities. (a) – (c) show the 277 

correlation between NH₃ predictions and observations, while (d) – (f) show the correlation between NO₃⁻ predictions and observations. 278 

The first column represents Xuzhou, the second column represents Zhenjiang, and the third column represents Suzhou. 279 

  280 

Figure 5. Relative contribution of different factors, including TNO3 = HNO₃ + NO₃⁻, TNHx = NH₃ + NH₄⁺, Ca²⁺, SO₄²⁻, RH, and T, to 281 

aerosol pH during the entire observation period in (a) Xuzhou, (b) Zhenjiang, and (c) Suzhou. 282 
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 283 

To further explore the response of aerosol pH to variations in SO₄²⁻ and NH₃ concentrations under different dust conditions 284 

(non-dust, local dust, and extremely dust storm), we conducted sensitivity simulations constrained by observations from 285 

Zhenjiang as a case study. As illustrated in Fig. 6a – c, we extended the NH₃ and SO₄²⁻ concentration ranges beyond their 286 

observed values to encompass potential variations across the YRD region. The input concentrations of Na⁺, SO₄²⁻, total 287 

chloride (TClx = Cl⁻ + HCl), K⁺, and Mg²⁺ were fixed at the average levels observed in Zhenjiang during the study period 288 

(see Table S2). Simulations were carried out under three distinct Ca²⁺ concentration scenarios: (1) non-dust (Ca²⁺ = 0 μg 289 

m⁻³), (2) local dust (Ca²⁺ = 0.7 μg m⁻³), and (3) extremely dust storm (Ca²⁺ = 3.00 μg m⁻³). In these simulations, total 290 

ammonia (TNHx = NH₄⁺ + NH₃) and total nitrate (TNO3 = NO₃⁻ + HNO₃) concentrations were independently changed 291 

and input into the ISORROPIA-II model. Under non-dust conditions (Ca²⁺ = 0 μg m⁻³), the model predicted lower aerosol 292 

pH values. As shown in Fig. 6a – b, a 5 – 10-fold increase in NH₃ concentration led to a pH increase of approximately 1 293 

unit, whereas aerosol pH demonstrated limited sensitivity to SO₄²⁻ concentration changes. This finding is consistent with 294 

previous studies (Zheng et al., 2022; Weber et al., 2016; Xie et al., 2020). However, under high Ca²⁺ concentration 295 

conditions, such as during extremely dust storm events, the influence of NH₃ on aerosol pH was notably mitigated (Fig. 296 

6c). The presence of Ca²⁺ during dust storms reduced the ability of NH₃ to modulate aerosol pH effectively. These results 297 

suggest that elevated Ca²⁺ concentrations, a characteristic of dust events, play a significant role in buffering the impact of 298 

NH₃ on aerosol pH. 299 

 300 

Figure 6. Sensitivity of the pH to ammonia (NH₃) and sulfate (SO₄²⁻) concentrations based on ISORROPIA-II model predictions under 301 

different Ca2+ concentration conditions: (a) 0, (b) 0.70, and (c) 3.00 μg m⁻³. 302 

 303 

3.3 Impact of aerosol pH on the partitioning of nitric acid 304 

In eastern China, nitrate has become a key component of PM2.5, instead of sulfate (Xu et al., 2023; Gao et al., 2023). As 305 
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a semi-volatile compound, nitrate is strongly influenced by the gas-particle partitioning process in the atmosphere. 306 

Aerosol pH not only determines the stability of nitrate but also governs whether it exists in the particulate phase or 307 

volatilizes as HNO₃ in the gas phase (Guo et al., 2018). At higher pH, nitrate tends to exist in the particle phase due to the 308 

oxidation of NOx, while under lower pH conditions, nitrate is more likely to volatilize into the gas phase as HNO₃ (Nenes 309 

et al., 2020). Using Eq. (2), we analyzed the relationship between the nitrate particle-phase fraction (ε(NO₃⁻)) and aerosol 310 

pH for three cities – Xuzhou, Zhenjiang, and Suzhou – under dust storm and local dust conditions. Fig. 7 shows the S-311 

shaped curve representing this relationship, calculated based on the average T and aerosol Wi during dust storm and local 312 

dust conditions, assuming ideal solution behavior (activity coefficient 𝛾ுశ = 1). This curve visually demonstrates the 313 

regulation of nitrate phase partitioning by aerosol pH under these conditions and provides a theoretical basis for 314 

controlling the effect of ammonia on particulate nitrate formation by adjusting aerosol pH (Guo et al., 2018). 315 

As cities along the dust storm transport path, Xuzhou, Zhenjiang, and Suzhou experience varying degrees of dust influence, 316 

leading to significant differences in aerosol pH. On average, aerosol pH is elevated during dust storms compared to local 317 

dust conditions. During dust storms, the mean aerosol pH values were 5.50 ± 1.65 in Xuzhou, 5.44 ± 1.69 in Zhenjiang, 318 

and 5.30 ± 1.67 in Suzhou. Under local dust conditions, these values were lower, at 4.12 ± 0.52, 3.92 ± 0.32, and 3.74 ± 319 

0.69 respectively. Xuzhou, situated at the northern edge of the dust storm transport path, exhibited the highest aerosol pH 320 

during both periods, reflecting the substantial impact of transported dust pollution. The S-shaped curve in Fig. 7 321 

demonstrates that under both dust storm and local dust conditions, the average aerosol pH aligns with nitrate particle-322 

phase fractions exceeding 99%, indicating that nitrate predominantly resides in the particle phase. This finding highlights 323 

the promoting effect of dust pollution on the gas-to-particle transformation of nitrate. 324 

When aerosol pH drops below 3, however, ε(NO₃⁻) decreases sharply, signifying the onset of nitrate volatilization into 325 

the gas phase. Notably, when aerosol pH lies in the range of 1 to 3, ε(NO₃⁻) exhibits heightened sensitivity to aerosol pH 326 

changes. This trend was consistently observed across all three cities. Reducing NH₃ concentrations is particularly effective 327 

in influencing nitrate gas-particle partitioning when aerosol pH is within this sensitive range, offering a promising strategy 328 

to mitigate regional particulate nitrate pollution. However, environments with dust pollution may disrupt this theoretical 329 

relationship. NVCs (such as Ca2+) in dust can neutralize acidic aerosol components, maintaining aerosol pH at relatively 330 

high levels (e.g., pH > approximately 3.5) (Fig. 7). This neutralization effect limits the ability to lower particulate nitrate 331 

concentrations solely by reducing NH₃ emissions, necessitating alternative approaches to address nitrate-driven air quality 332 

challenges in dust-influenced regions. 333 
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 334 
Figure 7. S-curve distributions for ε(NO₃⁻) under the conditions from different cities. Based on Eq. (2), the relationship between ε(NO₃⁻) 335 

and pH was calculated using the average T and Wi during dust storm and local dust periods (assuming 𝛾ேைయ
ష𝛾ுశ=0.28, 𝛾ுశ =1). The 336 

vertical dashed lines represent the average pH values calculated using ISORROPIA-II for the three cities. Error bars indicate the sample 337 

standard deviation of aerosol pH. 338 

 339 

To further quantify the impact of dust storms on aerosol pH and ε(NO₃⁻), we utilized the RF model combined with SHAP 340 

values for both prediction and sensitivity analysis. The correlation between the observed and predicted results from the 341 

RF model is shown in Fig. S4. The Index of Agreement (IOA) values ranged from 0.93 to 0.97, indicating a high level of 342 

model agreement. Meanwhile, the correlation coefficients (R) varied between 0.78 and 0.90, further validating the model’s 343 

predictive accuracy. For aerosol pH predictions, five evaluation metrics were used: MAE, RMSE, NMSE, MB, and NMB. 344 

The values for MAE ranged from 0.13 to 0.18, while RMSE values were between 0.26 and 0.29. For NMSE, the values 345 

ranged from 0.10 to 0.12, and the biases (MB and NMB) varied from -0.01 to -0.006 and 0.004 to 0.007, respectively. In 346 

comparison, the corresponding evaluation metrics for ε(NO₃⁻) were as follows: MAE ranged from 0.01 to 0.02, RMSE 347 

from 0.03 to 0.04, and NMSE from 0.10 to 0.21. The bias values for ε(NO₃⁻) ranged from -0.00006 to 0.004 for MB and 348 

from 0.003 to 0.007 for NMB. These statistical results demonstrate the reliability and robustness of the RF model in 349 

predicting aerosol pH and nitrate partitioning. 350 

Figure 8 illustrates the impact of dust storms and local dust conditions on aerosol pH and ε(NO₃⁻). The ΔSHAP values 351 

represent the difference between the average SHAP values of all variables during dust storm periods and the average 352 

SHAP values for all variables during the non-dust storm period. During dust storm conditions, ΔSHAP significantly 353 

increased in Xuzhou, Zhenjiang, and Suzhou, with aerosol pH values rising by Δ1.2, Δ1.5, and Δ1.5 units, respectively 354 
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(Fig. 8 a-c). This result is consistent with our previous conclusion that dust storms contribute to an increase in aerosol pH, 355 

confirming the positive impact of dust storms on the random forest model’s predictions of aerosol pH. Similarly, Fig. 8 356 

d-f shows the changes in ε(NO₃⁻) for the three cities under different weather conditions. It is evident that the effect of dust 357 

storms on ε(NO₃⁻) is 10 to 20 times greater than the impact of local non-dust storm conditions. This indicates that dust 358 

storm conditions have a significantly stronger positive contribution to the particle–phase fraction of nitrate. The presence 359 

of dust particles facilitates the conversion of nitrate to the particulate phase, highlighting the significant influence of dust 360 

storms on nitrate partitioning in the atmosphere. 361 

 362 

Figure 8. ΔSHAP values for (a) – (c) aerosol pH and (d) – (f) ε(NO₃⁻). The orange solid line represents the impact of dust storms, the 363 

gray solid line represents the non-dust scenario, and the black dashed line shows the difference between the two scenarios. 364 

 365 

3.4 Effectiveness of emission reduction on particulate nitrate under dust pollution 366 

To explore the impact of emission reductions of TNHx, TNO3, and SO₄²⁻ on ε(NO₃⁻) during different dust storm conditions, 367 

we conducted a sensitivity analysis using the average pollutant concentrations observed in Zhenjiang during the spring of 368 

2023. The results, shown in Fig. 9, demonstrate a nonlinear response of both ε(NO₃⁻) and the total ammonium-nitrate 369 

concentration (NH₄⁺ + NO₃⁻) to reductions in TNHx, TNO3, and SO₄²⁻, respectively. We simulated the effects of 370 

progressively reducing TNHx, TNO3, and SO₄²⁻ by 0% to 50% under different Ca²⁺ concentration conditions, which 371 

include different dust pollution scenarios. For the simulation, Ca²⁺ concentration was set to 0.1 µg m⁻³ for local dust 372 
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conditions and ranged from 0.7 to 3.0 µg m⁻³ for dust storm conditions. When the Ca²⁺ concentration exceeded 3 µg m⁻³, 373 

further reductions in the other variables had negligible effects on the output, with emission reductions having little to no 374 

impact on ε(NO₃⁻). 375 

As shown in Fig. 9a, it is evident that during local dust conditions, ε(NO₃⁻) remained relatively constant until TNHx 376 

emissions were reduced by 30%. At this point, ε(NO₃⁻) rapidly dropped from 99%, signaling the onset of a significant 377 

shift in the gas-particle partitioning of nitrate. When TNHx reductions reached 50%, ε(NO₃⁻) fell sharply to approximately 378 

30%, indicating that nitrate transitioned predominantly into its gas–phase form. This simulation result is consistent with 379 

the sensitivity analysis of NH₃ concentrations in section 3.2, which also showed a significant response in nitrate 380 

partitioning as NH₃ concentrations decreased. Thus, in the Zhenjiang region, a 30% reduction in TNHx emissions is 381 

necessary to effectively reduce the mass of (NH₄⁺ + NO₃⁻) during spring (Fig. 10 d). In contrast, during dust storm 382 

conditions (Fig. 9a), the reduction in TNHx had a much more subdued effect on ε(NO₃⁻), especially at higher Ca²⁺ 383 

concentrations (above 2.5 µg m⁻³), where the reduction had almost no impact on ε(NO₃⁻). 384 

For TNO3 reductions, as shown in Fig. 10 b, the changes in ε(NO₃⁻) were minimal, regardless of the Ca²⁺ concentration. 385 

However, during local dust conditions (Fig. 9e), the reduction of TNO3 led to a significant decrease in (NH₄⁺ + NO₃⁻) 386 

concentrations, indicating that TNO3 reduction was particularly effective under local dust conditions. Lastly, reductions 387 

in SO₄²⁻ emissions (Fig. 9c and f) had a smaller impact on both ε(NO₃⁻) and (NH₄⁺ + NO₃⁻) concentrations. Interestingly, 388 

at very low dust concentrations, SO₄²⁻ reductions could even lead to a slight increase (by up to 0.5%) in ε(NO₃⁻), indicating 389 

that sulfate reduction alone is not an effective strategy for controlling nitrate partitioning. 390 
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 391 
Figure 9. Sensitivity analysis simulating the impact of reducing TNHx (TNHx = NH₃ + NH₄⁺), TNO3 (TNO3 = HNO₃ + NO₃⁻), and 392 

SO₄²⁻ by 0-50% during dust events of varying intensities on ε(NO₃⁻) and NH₄⁺ + NO₃⁻. 393 

 394 

4. Conclusions and Impactions 395 

This study explores the impact of dust pollution on aerosol pH and nitrate gas-particle partitioning in three cities across 396 

the YRD region of Eastern China. By combining field observations, thermodynamic modeling, and machine learning 397 

techniques, we provide a comprehensive analysis of how different dust scenarios affect urban aerosol pH and gas-particle 398 

partitioning chemistry of nitrate. Our analysis of a dust storm event that originated in Mongolia and was transported over 399 

long distances to the YRD region in the spring of 2023 revealed a significant increase in PM10 concentrations, the average 400 

PM10 concentration in three cities along the route exceeds 400 μg m⁻³, approximately four times higher than during local 401 

dust events. Thermodynamic simulations using the ISORROPIA model showed that both ammonia and calcium ion 402 

concentrations strongly influenced aerosol pH, with average contributions of 47% and 7% respectively. Random forest 403 

model simulations further indicated that the presence of high NVCs during dust storms significantly contributed to 404 

changes in aerosol pH (1.2 – 1.5 units). Sensitivity analysis of pH responses to sulfate and NH₃ concentrations under 405 

different dust conditions (non-dust, local dust, and extremely dust storm) revealed that a 5 to 10 fold increase in NH₃ led 406 

to a 1-unit change in aerosol pH. Machine learning analysis showed that extreme dust storm events contributed 407 
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approximately 1.4 units to the increase in aerosol pH, with a corresponding increase in nitrate partitioning (16%). This 408 

suggests that under high aerosol pH conditions during dust pollution periods, nitrate is predominantly in the particulate 409 

phase, indicating that dust significantly inhibits the partitioning of nitrate into the gaseous phase. In addition, our 410 

sensitivity analyses also showed that ammonia reduction had the most significant effect on reducing nitrate aerosols under 411 

dust-free conditions. However, the effectiveness of ammonia reductions in lowering nitrate aerosol concentrations was 412 

significantly reduced due to the influence of NVCs on nitrate partitioning under dust pollution scenarios. These findings 413 

suggest that dust pollution can substantially weaken the impact of ammonia reductions on nitrate aerosol formation, 414 

highlighting the need for targeted control strategies during dust storm events. Dust emission remains a significant air 415 

pollution concern worldwide, while urban nitrate aerosol pollution is a pressing issue in many cities, particularly in East 416 

Asia, where the frequency of natural dust events has increased in recent years. These dust storms, along with 417 

anthropogenic dust, can substantially alter aerosol chemistry by modifying aerosol pH and nitrate partitioning. Therefore, 418 

effective dust control strategies are critical for mitigating the adverse effects of aerosol acidity on nitrate aerosol formation 419 

and improving air quality in dust-prone regions.  420 

  421 
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Data availability. Additional meteorological parameters can be accessed at the European Centre for Medium-Range 422 

Weather Forecasts (ECMWF) ERA5 reanalysis dataset (https://cds.climate.copernicus.eu/; last access: 21 November 423 

2023). Reginal PM10 data can be accessed at the China National Environmental Monitoring Centre 424 

(https://air.cnemc.cn:18007/; 21 last access: November, 2023). The additional data will be made available upon request 425 
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